

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Infrared Spectra of Morfolonium $(mpH)_2Mo_2Cl_6(H_2O)_2$ (I), $(mpH)_2Mo_2Cl_xBr_6$ $_x(H_2O)_2$ (II), $(mpH)_2Mo_2Br_6(H_2O)_2$ (III) and the Pyridinium $(PyH)_2Mo_2I_6(H_2O)_2$ (IV) Hexahalo-di(aquo): dimolybdate(II) Complexes, Containing Quadruple Metal-Metal Bounds

V. K. Ceylan^a

^a Afyon Kocatepe Üniversitesi, UŞLAK, TÜRKİYE

To cite this Article Ceylan, V. K.(1996) 'Infrared Spectra of Morfolonium $(mpH)_2Mo_2Cl_6(H_2O)_2$ (I), $(mpH)_2Mo_2Cl_xBr_6$
 $_x(H_2O)_2$ (II), $(mpH)_2Mo_2Br_6(H_2O)_2$ (III) and the Pyridinium $(PyH)_2Mo_2I_6(H_2O)_2$ (IV) Hexahalo-di(aquo): dimolybdate(II)
Complexes, Containing Quadruple Metal-Metal Bounds', *Spectroscopy Letters*, 29: 8, 1555 — 1561

To link to this Article: DOI: 10.1080/00387019608007146

URL: <http://dx.doi.org/10.1080/00387019608007146>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

INFRARED SPECTRA OF MORFOLONIUM
(mpH)₂Mo₂Cl₆(H₂O)₂(I), (mpH)₂Mo₂Cl_xBr_{6-x}(H₂O)₂(II),
(mpH)₂Mo₂Br₆(H₂O)₂(III) AND THE PYRIDINIUM
(PyH)₂Mo₂I₆(H₂O)₂(IV) HEXAHALO-DI(AQUO)
DIMOLYBDATE(II) COMPLEXES, CONTAINING
QUADRUPLE METAL-METAL BOUNDS

Key words: Infrared spectra; Ionic interactions; Morphinium and the Pyridinium Hexahalo-di(aquo) dimolybdate(II) complexes, with quadruple molybdenum-molybdenum bonds.

V.K. Ceylan

(Afyon Kocatepe Üniversitesi, Mühendislik Fakültesi, UŞAK -TÜRKIYE)

ABSTRACT

The electronic (800-400 nm), infrared (4000-200,400-20 cm⁻¹), ordinary Raman (400-200 cm⁻¹) spectra of morpholinium and the pyridium hexahalo-di(aquo) dimolybdate(II) complexes, containing quadruple metal-metal bonds were investigated. The electronic spectra of the solid compounds at various temperatures (25,100 and 300K) demonstrate intense and structured bands in the visible region (510-582 nm) attributed to the expected $\delta \rightarrow \delta^*$ transitions.

From the infrared and Raman spectra, the skeletal stretching modes in these complexes have been localized, and the characteristic bands of these ions were observed in the expected regions.

Finally, the ionic interactions were relatively weak, but the existence of phenomena was perceptible and the result was obtained in agreement with X-ray data.

INTRODUCTION

Over the past decade, a wide variety of quadruple metal-metal bonded complexes have been synthesized (1). Much of the interest has focused on the structural properties of these and related species were investigated by the method of X-ray crystallography(2,3) and infrared (4), Raman (5), resonance Raman (6) spectrescopy.

In this context, several hexahalo-di (aquo) dimolybdate (II) anions, $\text{Mo}_2\text{X}_6(\text{H}_2\text{O})_2^{2-}$, containing quadruply bonded molybdenum atoms have been prepared and characterized by X-ray diffraction methods (7-8). $\text{Mo}_2\text{X}_6(\text{H}_2\text{O})_2^{2-}$ seems to be the most frequently found halodimolybdate group in the presence of pyridinium ($\text{C}_5\text{H}_5\text{NH}^+$ or pyH^+), of 4-methylpyridinium ($\text{CH}_3\text{C}_5\text{H}_4\text{NH}^+$ or picH^+) and of morpholinium ($\text{C}_4\text{H}_9\text{ONH}_2^+$ or mpH^+) counterions. These anions generally contain a short metal-metal quadruple bond (ca 2.12 \AA^0) and water molecules are coordinated to molybdenum at ca 2.20 \AA^0 , so that anions possess a centre of symmetry and an overall symmetry near to C_{2h} and the cations possess an overall symmetry near to C_{2v} .

The spectroscopic studies have been performed (9-12) detailly on the above complexes. The aim of this work was to investigate the ionic interactions phenomena and to inform the obtained vibrational wavenumbers and the assignments of infrared ($4000-200\text{ cm}^{-1}$) spectra of these complexes.

EXPERIMENTAL

Preparative details

A gift from J.V. Brencic, the morpholinium salts $(\text{mpH})_2\text{Mo}_2\text{Cl}_6(\text{H}_2\text{O})_2$ (I), $(\text{mpH})_2\text{Mo}_2\text{Cl}_x\text{Br}_{6-x}(\text{H}_2\text{O})_2$ (II), $(\text{mpH})_2\text{Mo}_2\text{Br}_6(\text{H}_2\text{O})_2$ (III) and the pyridinium complex $(\text{pyH})_2\text{Mo}_2\text{I}_6(\text{H}_2\text{O})_2$ (IV) were prepared by the methods given in the literature(7,8).

All compounds except II were recystallized from 1:1 mixtures of halide acids and of the appropriate morpholinium or pyridinium salt. The recrystallizations of II from a 1:1 Hbr gave III.

Instrumental details

Electronic spectra were recorded using a Cary 17 spectrometer either in the diffuse reflectance mode (at 300K) or in the transmission mode with potassium or caesium halide pressed discs at various temperatures (25-300K).

The low-temperature spectra were obtained using a liquid nitrogen cryostat or a Cryodine Model 21 closed-cycle helium refrigerator. Infrared spectra of the complexes were recorded from nujol or fluorolube mulls held at 300K or at ca 80K by use of Perkin- Elmer 225 and 180 spectrometers ($400-180\text{ cm}^{-1}$) and of a Polytec FIR 30 interferometer ($250-20\text{ cm}^{-1}$).

Raman spectra were recorded with either a Coderg T800 or a Dilor RT130 triple monochromator instrument using nine emission lines of Model 164 Spectra-Physics Kr⁺ and Ar⁺ lasers (λ_0 from 676.4 to 457.9 nm). Dedection was by conventional d.c. techniques using a cooled RCA C31034 photomultiplier tube.

Repeat scan measurements were carried out with a Mostek Z80 microprocessor and all data could also be transferred to a PDP 11 computer. Spectra

from samples held at room temperature were obtained by use of a sample holder rotating at ca 1600 rev min⁻¹ (13,14) and those from samples held at ca 25-80K were obtained from K₂SO₄ or KClO₄ sample discs in conjunction with a glass block rotating at ca 1500 rev min⁻¹; the latter refracts the incident laser beam across the surface of the sample in order to minimize any local heating effects.

RESULTS

Electronic spectra

The electronic spectra of I, II, III, and IV at 300K in the transmission or diffuse reflectance mode exhibit intense broad bands at about 515, 520, 534 and 582 nm, respectively.

These bands were confidently assigned(9,10)to the ¹Ag→¹Au or δ(a_g)→δ*(a_u) (in the C_{2h} symmetry group) axially polarized and dipole allowed transitions by analogy with the corresponding transitions in similar Mo₂X₈⁴⁻, Mo₂(SO₄)₄⁴⁻ or Mo₂X₄L₄ systems with quadruple Mo-Mo bonds (11).

Infrared and ordinary Raman spectra

Structure and selection rules.

Compound IV crystallizes in the monoclinic space group P2₁ /c (or C_{2h}⁵) and the unit cell contains four cations on general positions and two anions on C₁ sites (7).

One can assume isomorphous structures for the morpholinium complexes even though X-ray results (8) prove that they crystallize in the triclinic PT space group with anions located on symmetry centres.

To a first approximation, the symmetry of an isolated pyridinium, (py H⁺) cation belongs to the C_{2v} point group and the 30 internal vibrations can be classified:

$$\Gamma^{C_{2v}}_{vib} = 11A_1(R,IR) + 3A_2(R) + 6B_1(R,IR) + 10B_2(R,IR)$$

All the modes are active in Raman spectra and 27 vibrations are active in infrared spectra. The morpholinium (mpH⁺) cation was considered the same symmetry C_{2v} and its internal vibrations:

$$\Gamma^{2v}_{vib} = 13A_1(R,IR) + 8A_2(R) + 9B_1(R,IR) + 12B_2(R,IR)$$

All the modes are active in Raman spectra and 34 vibrations are active infrared spectra.

Vibrational results

The structure of an isolated Mo₂X₆(H₂O)₂²⁻ anion, belongs to the C_{2h} point group and the internal vibrations infrared and Raman spectra ($\lambda_0=647.1$ nm) were registered in the 20-400 cm⁻¹ range where all the fundamental vibrations of the binuclear anions were expected.

Some typical spectra, the corresponding band wavenumbers, and the proposed assignments were reported(9,10).

Internal vibrations of the cations were considered in this article, therefore, a complete list of the infrared wavenumbers (4000-200cm⁻¹), assignments based on those known for morpholine (15) and various pyridinium salts (16) were reported in table 1. The infrared spectra of the 4 complexes were illustrated in Fig. 1.

TABLE 1. Vibrational wavenumber (cm⁻¹) and assignments of infrared spectra of complexes (I, II, III, IV)

(mpH ₂ -Mo-Cl ₂ -H ₂ O); Assignments	(mpH ₂ -Mo-Cl ₂ -Br ₂ -H ₂ O); Assignments	(mpH ₂ -Mo-Br ₂ -H ₂ O); Assignments	(pvH ₂ -Mo-L ₁ -H ₂ O); Assignments
3495 vw	v(OH ₂)	3480 w	v(OH ₂)
3361 m		3365 m	3371 w
3248 m	v _s (NH ₂) or	3250 m	3295 sb
3133 m	v _s (NH ₂)	3126 m	v _s (NH ₂) or
3046 m		3040 m	3125 m
3012 vw		3006 vw	3040 m
2993 vw		2990 sb	3005 vw
2975 vw	v _s (CH ₂) or	2961 w	v _s (CH ₂) or
2967 w	v _s (CH ₂)	2868 w	2962 w
2870 w		1625 w	2868 w
1635 w	δ(OH ₂)	1568 s	δ(OH ₂)
1576 s	δ(NH ₂)	1560 sb	1569 sb
1570 sh		1466 vw	1564 s
1467 sh		1455 sh	1560 sb
1457 sh		1448 m	1466 w
1450 m	δ(CH ₂)	1439 m	1452 sh
1441 m		1420 vw	1448 m
1424 w		1405 m	δ(CH ₂)
1406 m		1395 m	1448 m
1395 m		1387 w	1448 m
1389 m		1377 m	1439 m
1377 m	twist(CH ₂)	1344 m	1437 sh
1343 m		1313 sh	1419 w
1315 sh		1305 m	1404 m
1306 m		1283 w	1395 m
1288 m		1216 w	1387 w
1217 m	wag(CH ₂)	1184 m	1377 w
1185 m		1168 w	1377 w
1180 sh		1092 vs	twist(CH ₂)
1170 w		1085 sh	1534 sh
1092 vw	v(cycle)		1532 vs
1070 sh			1527 sh
1037 m	rock(CH ₂)	1036 ms	1527 sh
1027 m		1026 m	1305 m
1017 m		1016 w	1289 w
982 m		874 m	1483 vs
976 sh	v(cycle)	867 vs	1223 sh
869 vs			1479 sh
865 sh			1216 w
839 sh			1184 w
819 m	rock(CH ₂)	816 w	1179 vw
772 w			1167 vw
588 m		585 m	1098 sh
486 w			1092 vs
474 w	δ(cycle)	472 vw	v(cycle)
448 sh			1085 sh
440 m			1035 m
415 m		438 m	rock(CH ₂)
395 m	v(Mo-O)	414 m	1236 m
375 sh		385 w	1026 w
374 vs	v(Mo-Cl)	300 ml	1195 m
		276 vw	1016 w
273w			1186 sh
266w		256w	1160 w
255w			1060 w
			1005 w
			993 w
237wl	δ(MoMoO)	237w	874 m
228sh			867 vs
220m		219m	863 sh
208m	δ(MoMoO)	207w	815 w
			rock(CH ₂)
			1026 vs
			1005 w
			991 w
			928 wl
			γ(CH)
			873 vs
			856 vs
			791 w
			740ms
			730vs
			672sh
			666vs
			635w
			608w
			520ml
			386w
			287wl
			v(MoO)
			δ(MoMoO)

w:Weak; m: Medium; s: Strong; l: Large; v: Very; sh: Shoulder

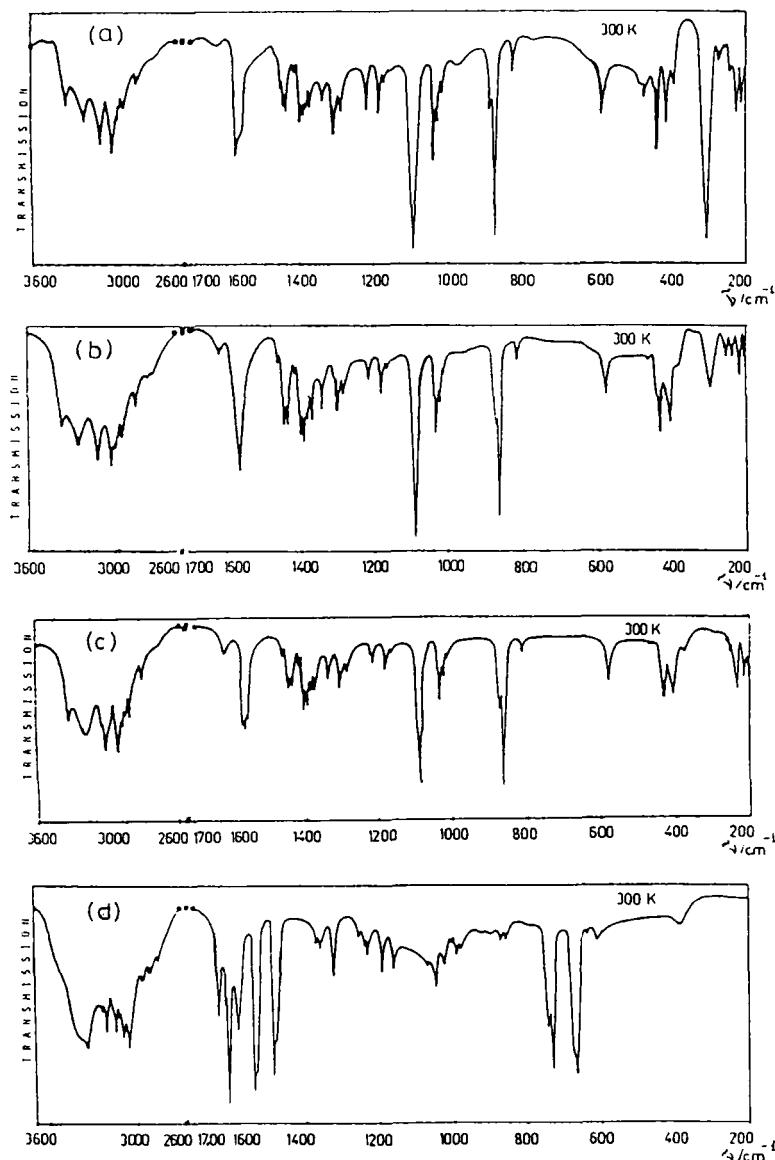


Fig. 1 Infrared spectra of (a) $(\text{mpH})_2\text{Mo}_2\text{Cl}_6(\text{H}_2\text{O})_2$, (b) $(\text{mpH})_2\text{Mo}_2\text{Cl}_x\text{Br}_{6-x}(\text{H}_2\text{O})_2$, (c) $(\text{mpH})_2\text{Mo}_2\text{Br}_6(\text{H}_2\text{O})_2$ and (d) $(\text{pyH})_2\text{Mo}_2\text{I}_6(\text{H}_2\text{O})_2$ in the $4000-200\text{cm}^{-1}$ wavenumber range.

DISCUSSION

The characteristic bands of these cations (mpH^+ , pyH^-) were observed in the expected regions. This result is in good agreement with previous studies (15,16). The case, we were interested in the ionic interactions of these complexes. Totally symmetric Raman stretching vibration $\tilde{\nu}(\text{Mo-Mo})$ of quadruple molybdenum-molybdenum bonds is in a linear variation with the mass which is including molybdenum and its ligands (12). The wavenumber $\tilde{\nu}(\text{Mo-Mo})$ varies as a function of ligands (X) and as a function of the cations (mpH^+ , pyH^-) as well.

Since $\tilde{\nu}(\text{Mo-Mo})$ was determined as $\tilde{\nu} = \text{AM}_X + \text{B}$ then the data of three complexes (I, II, III) were fitted on the line, but, the complex (IV) has a different cation, pyridinium (pyH^-) and its coordinates were slightly off the line. This cation made different effect on the anion $[\text{Mo}_2\text{X}_6(\text{H}_2\text{O})_2]^{2-}$ in comparison with morpholinium (mpH^+) cation. In conclusion, the ionic interactions of these complexes were relatively weak, but the existence of phenomena was perceptible and the result was obtained in good agreement with X-ray data.

REFERENCES

- 1) F.A. Cotton, Chem. Soc. Rev. 1975; 4:27
- 2) J.V. Brencic and F.A. Cotton, Inorg. Chem. 1969; 8:2698
- 3) J.V. Brencic and F.A. Cotton, Inorg. Chem. 1970; 9:346
- 4) C. Oldham and A.P. Ketteringham, J. Chem. Soc., Dalton Trans. 1973; 2304
- 5) J. San Fillipo and H.J. Sniadoch, Inorg. Chem. 1973; 12:2326
- 6) R.J.H. Clark and M.L. Franks, J. Am. Chem. Soc. 1976; 98:2763
- 7) J.V. Brencic and P. Segedin, "The structures and the preparation of Hexahalo-di(aquo) dimolybdate(II) Anions." Inorg. Chim. Acta 1978; 29:281
- 8) J.V. Brencic, L. Golic and P. Segedin, "The structures and the preparations of Hexahalo-di(aquo) dimolybdate(II) Anions." Inorg. Chim. Acta 1982; 57:247
- 9) V.K. Ceylan "Etude expérimentale et théorique des spectres électroniques et Raman de résonance de composés à liaisons quadruples Mo=Mo" These 3e cycle, Univ. Paris 6 1983.
- 10) V.K. Ceylan, C. Sourisseau and J.V. Brencic, "Electronic, Infrared, Raman and Resonance Raman Spectra of some Hexahalo-di(aquo) dimolybdate(II) Anions, $\text{Mo}_2\text{X}_6(\text{H}_2\text{O})_2^{2-}$, with Quadruple Molybdenum-Molybdenum Bonds" J.R. Spectroscopy 1985; 16:128
- 11) V.K. Ceylan, "EXPERIMENTAL AND THEORETICAL STUDY OF "ANOMALOUS"-INTENSITY VARIATIONS IN THE RESONANCE RAMAN EXCITATION PROFILES OF THE FUNDAMENTAL AND ITS OVERTONES FOR TOTALLY SYMMETRIC RAMAN STRETCHING VIBRATION $\tilde{\nu}(\text{Mo-Mo})$ OF QUADRUPLE MOLYBDENUM -MOLYBDENUM BONDS" Spectroscopy Letters 1995; 28:8
- 12) V.K. Ceylan, "Totally symmetric Raman Stretching Vibration $\tilde{\nu}(\text{Mo-Mo})$ of Quadruple Molybdenum - Molybdenum Bonds, is In a Linear Variation with the mass which is including Molybdenum and its Ligands" 1996 (Under press)
- 13) R.J.H. Clark, "In advances in Infrared and Raman Spectroscopy." edited by R.J.H. Clark and R.E. Hester, Heydon, London 1977; 1:143

- 14) W.Kiefer, "In advances in Infrared and Raman Spectroscopy." edited by R.J.H. Clark and R.E.Hester Heydon, London 1977, 3:1
- 15) P. V. Shanbhag, M.A. Shashidham and K.S. Rao, "Infrared Spectra of Morpholine." Indian J. Phys. 1979, 53B:140
- 16) R. Foglizzo and A.Novak, "Infrared Spectra of Pyridinium Salts" J. Chim Phys. 1969;66:1539.

Received: May 1, 1996

Accepted: June 10, 1996